(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

@(Cons(x, xs), ys) → Cons(x, @(xs, ys))
@(Nil, ys) → ys
binom(Cons(x, xs), Cons(x', xs')) → @(binom(xs, xs'), binom(xs, Cons(x', xs')))
binom(Cons(x, xs), Nil) → Cons(Nil, Nil)
binom(Nil, k) → Cons(Nil, Nil)
goal(x, y) → binom(x, y)

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

@(Cons(x, xs), ys) → Cons(x, @(xs, ys))
@(Nil, ys) → ys
binom(Cons(x, xs), Cons(x', xs')) → @(binom(xs, xs'), binom(xs, Cons(x', xs')))
binom(Cons(x, xs), Nil) → Cons(Nil, Nil)
binom(Nil, k) → Cons(Nil, Nil)
goal(x, y) → binom(x, y)

S is empty.
Rewrite Strategy: INNERMOST

(3) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
Cons/0

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

@(Cons(xs), ys) → Cons(@(xs, ys))
@(Nil, ys) → ys
binom(Cons(xs), Cons(xs')) → @(binom(xs, xs'), binom(xs, Cons(xs')))
binom(Cons(xs), Nil) → Cons(Nil)
binom(Nil, k) → Cons(Nil)
goal(x, y) → binom(x, y)

S is empty.
Rewrite Strategy: INNERMOST

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

Innermost TRS:
Rules:
@(Cons(xs), ys) → Cons(@(xs, ys))
@(Nil, ys) → ys
binom(Cons(xs), Cons(xs')) → @(binom(xs, xs'), binom(xs, Cons(xs')))
binom(Cons(xs), Nil) → Cons(Nil)
binom(Nil, k) → Cons(Nil)
goal(x, y) → binom(x, y)

Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
@, binom

They will be analysed ascendingly in the following order:
@ < binom

(8) Obligation:

Innermost TRS:
Rules:
@(Cons(xs), ys) → Cons(@(xs, ys))
@(Nil, ys) → ys
binom(Cons(xs), Cons(xs')) → @(binom(xs, xs'), binom(xs, Cons(xs')))
binom(Cons(xs), Nil) → Cons(Nil)
binom(Nil, k) → Cons(Nil)
goal(x, y) → binom(x, y)

Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))

The following defined symbols remain to be analysed:
@, binom

They will be analysed ascendingly in the following order:
@ < binom

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

Induction Base:
@(gen_Cons:Nil2_0(0), gen_Cons:Nil2_0(b)) →RΩ(1)
gen_Cons:Nil2_0(b)

Induction Step:
@(gen_Cons:Nil2_0(+(n4_0, 1)), gen_Cons:Nil2_0(b)) →RΩ(1)
Cons(@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b))) →IH
Cons(gen_Cons:Nil2_0(+(b, c5_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

Innermost TRS:
Rules:
@(Cons(xs), ys) → Cons(@(xs, ys))
@(Nil, ys) → ys
binom(Cons(xs), Cons(xs')) → @(binom(xs, xs'), binom(xs, Cons(xs')))
binom(Cons(xs), Nil) → Cons(Nil)
binom(Nil, k) → Cons(Nil)
goal(x, y) → binom(x, y)

Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

Lemmas:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))

The following defined symbols remain to be analysed:
binom

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
binom(gen_Cons:Nil2_0(+(1, n490_0)), gen_Cons:Nil2_0(+(1, n490_0))) → *3_0, rt ∈ Ω(n4900)

Induction Base:
binom(gen_Cons:Nil2_0(+(1, 0)), gen_Cons:Nil2_0(+(1, 0)))

Induction Step:
binom(gen_Cons:Nil2_0(+(1, +(n490_0, 1))), gen_Cons:Nil2_0(+(1, +(n490_0, 1)))) →RΩ(1)
@(binom(gen_Cons:Nil2_0(+(1, n490_0)), gen_Cons:Nil2_0(+(1, n490_0))), binom(gen_Cons:Nil2_0(+(1, n490_0)), Cons(gen_Cons:Nil2_0(+(1, n490_0))))) →IH
@(*3_0, binom(gen_Cons:Nil2_0(+(1, n490_0)), Cons(gen_Cons:Nil2_0(+(1, n490_0))))) →RΩ(1)
@(*3_0, @(binom(gen_Cons:Nil2_0(n490_0), gen_Cons:Nil2_0(+(1, n490_0))), binom(gen_Cons:Nil2_0(n490_0), Cons(gen_Cons:Nil2_0(+(1, n490_0))))))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

Innermost TRS:
Rules:
@(Cons(xs), ys) → Cons(@(xs, ys))
@(Nil, ys) → ys
binom(Cons(xs), Cons(xs')) → @(binom(xs, xs'), binom(xs, Cons(xs')))
binom(Cons(xs), Nil) → Cons(Nil)
binom(Nil, k) → Cons(Nil)
goal(x, y) → binom(x, y)

Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

Lemmas:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
binom(gen_Cons:Nil2_0(+(1, n490_0)), gen_Cons:Nil2_0(+(1, n490_0))) → *3_0, rt ∈ Ω(n4900)

Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

(16) BOUNDS(n^1, INF)

(17) Obligation:

Innermost TRS:
Rules:
@(Cons(xs), ys) → Cons(@(xs, ys))
@(Nil, ys) → ys
binom(Cons(xs), Cons(xs')) → @(binom(xs, xs'), binom(xs, Cons(xs')))
binom(Cons(xs), Nil) → Cons(Nil)
binom(Nil, k) → Cons(Nil)
goal(x, y) → binom(x, y)

Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

Lemmas:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
binom(gen_Cons:Nil2_0(+(1, n490_0)), gen_Cons:Nil2_0(+(1, n490_0))) → *3_0, rt ∈ Ω(n4900)

Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

(19) BOUNDS(n^1, INF)

(20) Obligation:

Innermost TRS:
Rules:
@(Cons(xs), ys) → Cons(@(xs, ys))
@(Nil, ys) → ys
binom(Cons(xs), Cons(xs')) → @(binom(xs, xs'), binom(xs, Cons(xs')))
binom(Cons(xs), Nil) → Cons(Nil)
binom(Nil, k) → Cons(Nil)
goal(x, y) → binom(x, y)

Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil

Lemmas:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)

(22) BOUNDS(n^1, INF)