(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
@(Cons(x, xs), ys) → Cons(x, @(xs, ys))
@(Nil, ys) → ys
binom(Cons(x, xs), Cons(x', xs')) → @(binom(xs, xs'), binom(xs, Cons(x', xs')))
binom(Cons(x, xs), Nil) → Cons(Nil, Nil)
binom(Nil, k) → Cons(Nil, Nil)
goal(x, y) → binom(x, y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
@(Cons(x, xs), ys) → Cons(x, @(xs, ys))
@(Nil, ys) → ys
binom(Cons(x, xs), Cons(x', xs')) → @(binom(xs, xs'), binom(xs, Cons(x', xs')))
binom(Cons(x, xs), Nil) → Cons(Nil, Nil)
binom(Nil, k) → Cons(Nil, Nil)
goal(x, y) → binom(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
@(Cons(xs), ys) → Cons(@(xs, ys))
@(Nil, ys) → ys
binom(Cons(xs), Cons(xs')) → @(binom(xs, xs'), binom(xs, Cons(xs')))
binom(Cons(xs), Nil) → Cons(Nil)
binom(Nil, k) → Cons(Nil)
goal(x, y) → binom(x, y)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
@(Cons(xs), ys) → Cons(@(xs, ys))
@(Nil, ys) → ys
binom(Cons(xs), Cons(xs')) → @(binom(xs, xs'), binom(xs, Cons(xs')))
binom(Cons(xs), Nil) → Cons(Nil)
binom(Nil, k) → Cons(Nil)
goal(x, y) → binom(x, y)
Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
@,
binomThey will be analysed ascendingly in the following order:
@ < binom
(8) Obligation:
Innermost TRS:
Rules:
@(
Cons(
xs),
ys) →
Cons(
@(
xs,
ys))
@(
Nil,
ys) →
ysbinom(
Cons(
xs),
Cons(
xs')) →
@(
binom(
xs,
xs'),
binom(
xs,
Cons(
xs')))
binom(
Cons(
xs),
Nil) →
Cons(
Nil)
binom(
Nil,
k) →
Cons(
Nil)
goal(
x,
y) →
binom(
x,
y)
Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
@, binom
They will be analysed ascendingly in the following order:
@ < binom
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
@(
gen_Cons:Nil2_0(
n4_0),
gen_Cons:Nil2_0(
b)) →
gen_Cons:Nil2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
@(gen_Cons:Nil2_0(0), gen_Cons:Nil2_0(b)) →RΩ(1)
gen_Cons:Nil2_0(b)
Induction Step:
@(gen_Cons:Nil2_0(+(n4_0, 1)), gen_Cons:Nil2_0(b)) →RΩ(1)
Cons(@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b))) →IH
Cons(gen_Cons:Nil2_0(+(b, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
@(
Cons(
xs),
ys) →
Cons(
@(
xs,
ys))
@(
Nil,
ys) →
ysbinom(
Cons(
xs),
Cons(
xs')) →
@(
binom(
xs,
xs'),
binom(
xs,
Cons(
xs')))
binom(
Cons(
xs),
Nil) →
Cons(
Nil)
binom(
Nil,
k) →
Cons(
Nil)
goal(
x,
y) →
binom(
x,
y)
Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
binom
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
binom(
gen_Cons:Nil2_0(
+(
1,
n490_0)),
gen_Cons:Nil2_0(
+(
1,
n490_0))) →
*3_0, rt ∈ Ω(n490
0)
Induction Base:
binom(gen_Cons:Nil2_0(+(1, 0)), gen_Cons:Nil2_0(+(1, 0)))
Induction Step:
binom(gen_Cons:Nil2_0(+(1, +(n490_0, 1))), gen_Cons:Nil2_0(+(1, +(n490_0, 1)))) →RΩ(1)
@(binom(gen_Cons:Nil2_0(+(1, n490_0)), gen_Cons:Nil2_0(+(1, n490_0))), binom(gen_Cons:Nil2_0(+(1, n490_0)), Cons(gen_Cons:Nil2_0(+(1, n490_0))))) →IH
@(*3_0, binom(gen_Cons:Nil2_0(+(1, n490_0)), Cons(gen_Cons:Nil2_0(+(1, n490_0))))) →RΩ(1)
@(*3_0, @(binom(gen_Cons:Nil2_0(n490_0), gen_Cons:Nil2_0(+(1, n490_0))), binom(gen_Cons:Nil2_0(n490_0), Cons(gen_Cons:Nil2_0(+(1, n490_0))))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
@(
Cons(
xs),
ys) →
Cons(
@(
xs,
ys))
@(
Nil,
ys) →
ysbinom(
Cons(
xs),
Cons(
xs')) →
@(
binom(
xs,
xs'),
binom(
xs,
Cons(
xs')))
binom(
Cons(
xs),
Nil) →
Cons(
Nil)
binom(
Nil,
k) →
Cons(
Nil)
goal(
x,
y) →
binom(
x,
y)
Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
binom(gen_Cons:Nil2_0(+(1, n490_0)), gen_Cons:Nil2_0(+(1, n490_0))) → *3_0, rt ∈ Ω(n4900)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)
(17) Obligation:
Innermost TRS:
Rules:
@(
Cons(
xs),
ys) →
Cons(
@(
xs,
ys))
@(
Nil,
ys) →
ysbinom(
Cons(
xs),
Cons(
xs')) →
@(
binom(
xs,
xs'),
binom(
xs,
Cons(
xs')))
binom(
Cons(
xs),
Nil) →
Cons(
Nil)
binom(
Nil,
k) →
Cons(
Nil)
goal(
x,
y) →
binom(
x,
y)
Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
binom(gen_Cons:Nil2_0(+(1, n490_0)), gen_Cons:Nil2_0(+(1, n490_0))) → *3_0, rt ∈ Ω(n4900)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(19) BOUNDS(n^1, INF)
(20) Obligation:
Innermost TRS:
Rules:
@(
Cons(
xs),
ys) →
Cons(
@(
xs,
ys))
@(
Nil,
ys) →
ysbinom(
Cons(
xs),
Cons(
xs')) →
@(
binom(
xs,
xs'),
binom(
xs,
Cons(
xs')))
binom(
Cons(
xs),
Nil) →
Cons(
Nil)
binom(
Nil,
k) →
Cons(
Nil)
goal(
x,
y) →
binom(
x,
y)
Types:
@ :: Cons:Nil → Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
Nil :: Cons:Nil
binom :: Cons:Nil → Cons:Nil → Cons:Nil
goal :: Cons:Nil → Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
@(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(22) BOUNDS(n^1, INF)